- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fatemi, Z. (2)
-
Zheleva, E. (2)
-
Ahsan, R. (1)
-
Arbour, D. (1)
-
Bhattacharya, A (1)
-
Dhariwal, V (1)
-
Eugenio, B Di (1)
-
Fatemi, Z (1)
-
Levine, L (1)
-
Marai, GE (1)
-
Rojecki, A (1)
-
Wentzel, A (1)
-
Zheleva, E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a visual computing framework for analysing moral rhetoric on social media around controversial topics. Using Moral Foundation Theory, we propose a methodology for deconstructing and visualizing the when, where and who behind each of these moral dimensions as expressed in microblog data. We characterize the design of this framework, developed in collaboration with experts from language processing, communications and causal inference. Our approach integrates microblog data with multiple sources of geospatial and temporal data, and leverages unsupervised machine learning (generalized additive models) to support collaborative hypothesis discovery and testing. We implement this approach in a system named MOTIV. We illustrate this approach on two problems, one related to Stay‐at‐home policies during the COVID‐19 pandemic, and the other related to the Black Lives Matter movement. Through detailed case studies and discussions with collaborators, we identify several insights discovered regarding the different drivers of moral sentiment in social media. Our results indicate that this visual approach supports rapid, collaborative hypothesis testing, and can help give insights into the underlying moral values behind controversial political issues.more » « less
-
Ahsan, R.; Fatemi, Z.; Arbour, D.; Zheleva, E. (, 38th Conference on Uncertainty in Artificial Intelligence (UAI) 2022. PMLR)
-
Fatemi, Z.; Zheleva, E. (, 14th International AAAI Conference on Web and Social Media)null (Ed.)Current approaches to A/B testing in networks focus on limiting interference, the concern that treatment effects can ”spill over” from treatment nodes to control nodes and lead to biased causal effect estimation. Prominent methods for network experiment design rely on two-stage randomization, in which sparsely-connected clusters are identified and cluster randomization dictates the node assignment to treatment and control. Here, we show that cluster randomization does not ensure sufficient node randomization and it can lead to selection bias in which treatment and control nodes represent different populations of users. To address this problem, we propose a principled framework for network experiment design which jointly minimizes interference and selection bias. We introduce the concepts of edge spillover probability and cluster matching and demonstrate their importance for designing network A/B testing. Our experiments on a number of real-world datasets show that our proposed framework leads to significantly lower error in causal effect estimation than existing solutions.more » « less
An official website of the United States government

Full Text Available